import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import datetime
import scipy.stats
%matplotlib inline
#sets the default autosave frequency in seconds
%autosave 60
sns.set_style('dark')
sns.set(font_scale=1.2)
import warnings
warnings.filterwarnings('ignore')
pd.set_option('display.max_columns',None)
#pd.set_option('display.max_rows',None)
pd.set_option('display.width', 1000)
np.random.seed(0)
np.set_printoptions(suppress=True)
Autosaving every 60 seconds
boston_url = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ST0151EN-SkillsNetwork/labs/boston_housing.csv'
boston_df=pd.read_csv(boston_url)
boston_df
Unnamed: 0 | CRIM | ZN | INDUS | CHAS | NOX | RM | AGE | DIS | RAD | TAX | PTRATIO | LSTAT | MEDV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.00632 | 18.0 | 2.31 | 0.0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3 | 4.98 | 24.0 |
1 | 1 | 0.02731 | 0.0 | 7.07 | 0.0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8 | 9.14 | 21.6 |
2 | 2 | 0.02729 | 0.0 | 7.07 | 0.0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8 | 4.03 | 34.7 |
3 | 3 | 0.03237 | 0.0 | 2.18 | 0.0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7 | 2.94 | 33.4 |
4 | 4 | 0.06905 | 0.0 | 2.18 | 0.0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7 | 5.33 | 36.2 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
501 | 501 | 0.06263 | 0.0 | 11.93 | 0.0 | 0.573 | 6.593 | 69.1 | 2.4786 | 1.0 | 273.0 | 21.0 | 9.67 | 22.4 |
502 | 502 | 0.04527 | 0.0 | 11.93 | 0.0 | 0.573 | 6.120 | 76.7 | 2.2875 | 1.0 | 273.0 | 21.0 | 9.08 | 20.6 |
503 | 503 | 0.06076 | 0.0 | 11.93 | 0.0 | 0.573 | 6.976 | 91.0 | 2.1675 | 1.0 | 273.0 | 21.0 | 5.64 | 23.9 |
504 | 504 | 0.10959 | 0.0 | 11.93 | 0.0 | 0.573 | 6.794 | 89.3 | 2.3889 | 1.0 | 273.0 | 21.0 | 6.48 | 22.0 |
505 | 505 | 0.04741 | 0.0 | 11.93 | 0.0 | 0.573 | 6.030 | 80.8 | 2.5050 | 1.0 | 273.0 | 21.0 | 7.88 | 11.9 |
506 rows × 14 columns
boston_df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Unnamed: 0 506 non-null int64 1 CRIM 506 non-null float64 2 ZN 506 non-null float64 3 INDUS 506 non-null float64 4 CHAS 506 non-null float64 5 NOX 506 non-null float64 6 RM 506 non-null float64 7 AGE 506 non-null float64 8 DIS 506 non-null float64 9 RAD 506 non-null float64 10 TAX 506 non-null float64 11 PTRATIO 506 non-null float64 12 LSTAT 506 non-null float64 13 MEDV 506 non-null float64 dtypes: float64(13), int64(1) memory usage: 55.5 KB
boston_df.describe()
Unnamed: 0 | CRIM | ZN | INDUS | CHAS | NOX | RM | AGE | DIS | RAD | TAX | PTRATIO | LSTAT | MEDV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 |
mean | 252.500000 | 3.613524 | 11.363636 | 11.136779 | 0.069170 | 0.554695 | 6.284634 | 68.574901 | 3.795043 | 9.549407 | 408.237154 | 18.455534 | 12.653063 | 22.532806 |
std | 146.213884 | 8.601545 | 23.322453 | 6.860353 | 0.253994 | 0.115878 | 0.702617 | 28.148861 | 2.105710 | 8.707259 | 168.537116 | 2.164946 | 7.141062 | 9.197104 |
min | 0.000000 | 0.006320 | 0.000000 | 0.460000 | 0.000000 | 0.385000 | 3.561000 | 2.900000 | 1.129600 | 1.000000 | 187.000000 | 12.600000 | 1.730000 | 5.000000 |
25% | 126.250000 | 0.082045 | 0.000000 | 5.190000 | 0.000000 | 0.449000 | 5.885500 | 45.025000 | 2.100175 | 4.000000 | 279.000000 | 17.400000 | 6.950000 | 17.025000 |
50% | 252.500000 | 0.256510 | 0.000000 | 9.690000 | 0.000000 | 0.538000 | 6.208500 | 77.500000 | 3.207450 | 5.000000 | 330.000000 | 19.050000 | 11.360000 | 21.200000 |
75% | 378.750000 | 3.677083 | 12.500000 | 18.100000 | 0.000000 | 0.624000 | 6.623500 | 94.075000 | 5.188425 | 24.000000 | 666.000000 | 20.200000 | 16.955000 | 25.000000 |
max | 505.000000 | 88.976200 | 100.000000 | 27.740000 | 1.000000 | 0.871000 | 8.780000 | 100.000000 | 12.126500 | 24.000000 | 711.000000 | 22.000000 | 37.970000 | 50.000000 |
boston_df.columns
Index(['Unnamed: 0', 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'LSTAT', 'MEDV'], dtype='object')
boston_df.hist(bins=50, figsize=(20,10))
plt.suptitle('Feature Distribution', x=0.5, y=1.02, ha='center', fontsize='large')
plt.tight_layout()
plt.show()
plt.figure(figsize=(20,20))
plt.suptitle('Pairplots of features', x=0.5, y=1.02, ha='center', fontsize='large')
sns.pairplot(boston_df.sample(250))
plt.show()
<Figure size 1440x1440 with 0 Axes>
#For the "Median value of owner-occupied homes" provide a boxplot
plt.figure(figsize=(10,5))
sns.boxplot(x=boston_df.MEDV)
plt.title("Boxplot for MEDV")
plt.show()
#Provide a histogram for the Charles river variable
plt.figure(figsize=(10,5))
sns.distplot(a=boston_df.CHAS,bins=10, kde=False)
plt.title("Histogram for Charles river")
plt.show()
#Provide a boxplot for the MEDV variable vs the AGE variable.
#(Discretize the age variable into three groups of 35 years and younger,
#between 35 and 70 years and 70 years and older)
boston_df.loc[(boston_df["AGE"] <= 35),'age_group'] = '35 years and younger'
boston_df.loc[(boston_df["AGE"] > 35) & (boston_df["AGE"]<70),'age_group'] = 'between 35 and 70 years'
boston_df.loc[(boston_df["AGE"] >= 70),'age_group'] = '70 years and older'
boston_df
Unnamed: 0 | CRIM | ZN | INDUS | CHAS | NOX | RM | AGE | DIS | RAD | TAX | PTRATIO | LSTAT | MEDV | age_group | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.00632 | 18.0 | 2.31 | 0.0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3 | 4.98 | 24.0 | between 35 and 70 years |
1 | 1 | 0.02731 | 0.0 | 7.07 | 0.0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8 | 9.14 | 21.6 | 70 years and older |
2 | 2 | 0.02729 | 0.0 | 7.07 | 0.0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8 | 4.03 | 34.7 | between 35 and 70 years |
3 | 3 | 0.03237 | 0.0 | 2.18 | 0.0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7 | 2.94 | 33.4 | between 35 and 70 years |
4 | 4 | 0.06905 | 0.0 | 2.18 | 0.0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7 | 5.33 | 36.2 | between 35 and 70 years |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
501 | 501 | 0.06263 | 0.0 | 11.93 | 0.0 | 0.573 | 6.593 | 69.1 | 2.4786 | 1.0 | 273.0 | 21.0 | 9.67 | 22.4 | between 35 and 70 years |
502 | 502 | 0.04527 | 0.0 | 11.93 | 0.0 | 0.573 | 6.120 | 76.7 | 2.2875 | 1.0 | 273.0 | 21.0 | 9.08 | 20.6 | 70 years and older |
503 | 503 | 0.06076 | 0.0 | 11.93 | 0.0 | 0.573 | 6.976 | 91.0 | 2.1675 | 1.0 | 273.0 | 21.0 | 5.64 | 23.9 | 70 years and older |
504 | 504 | 0.10959 | 0.0 | 11.93 | 0.0 | 0.573 | 6.794 | 89.3 | 2.3889 | 1.0 | 273.0 | 21.0 | 6.48 | 22.0 | 70 years and older |
505 | 505 | 0.04741 | 0.0 | 11.93 | 0.0 | 0.573 | 6.030 | 80.8 | 2.5050 | 1.0 | 273.0 | 21.0 | 7.88 | 11.9 | 70 years and older |
506 rows × 15 columns
plt.figure(figsize=(10,5))
sns.boxplot(x=boston_df.MEDV, y=boston_df.age_group, data=boston_df)
plt.title("Boxplot for the MEDV variable vs the AGE variable")
plt.show()
#Provide a scatter plot to show the relationship between Nitric oxide concentrations and
#the proportion of non-retail business acres per town. What can you say about the relationship?
plt.figure(figsize=(10,5))
sns.scatterplot(x=boston_df.NOX, y=boston_df.INDUS, data=boston_df)
plt.title("Relationship between NOX and INDUS")
plt.show()
#Create a histogram for the pupil to teacher ratio variable
plt.figure(figsize=(10,5))
sns.distplot(a=boston_df.PTRATIO,bins=10, kde=False)
plt.title("Histogram for the pupil to teacher ratio variable")
plt.show()
boston_df
Unnamed: 0 | CRIM | ZN | INDUS | CHAS | NOX | RM | AGE | DIS | RAD | TAX | PTRATIO | LSTAT | MEDV | age_group | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.00632 | 18.0 | 2.31 | 0.0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3 | 4.98 | 24.0 | between 35 and 70 years |
1 | 1 | 0.02731 | 0.0 | 7.07 | 0.0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8 | 9.14 | 21.6 | 70 years and older |
2 | 2 | 0.02729 | 0.0 | 7.07 | 0.0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8 | 4.03 | 34.7 | between 35 and 70 years |
3 | 3 | 0.03237 | 0.0 | 2.18 | 0.0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7 | 2.94 | 33.4 | between 35 and 70 years |
4 | 4 | 0.06905 | 0.0 | 2.18 | 0.0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7 | 5.33 | 36.2 | between 35 and 70 years |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
501 | 501 | 0.06263 | 0.0 | 11.93 | 0.0 | 0.573 | 6.593 | 69.1 | 2.4786 | 1.0 | 273.0 | 21.0 | 9.67 | 22.4 | between 35 and 70 years |
502 | 502 | 0.04527 | 0.0 | 11.93 | 0.0 | 0.573 | 6.120 | 76.7 | 2.2875 | 1.0 | 273.0 | 21.0 | 9.08 | 20.6 | 70 years and older |
503 | 503 | 0.06076 | 0.0 | 11.93 | 0.0 | 0.573 | 6.976 | 91.0 | 2.1675 | 1.0 | 273.0 | 21.0 | 5.64 | 23.9 | 70 years and older |
504 | 504 | 0.10959 | 0.0 | 11.93 | 0.0 | 0.573 | 6.794 | 89.3 | 2.3889 | 1.0 | 273.0 | 21.0 | 6.48 | 22.0 | 70 years and older |
505 | 505 | 0.04741 | 0.0 | 11.93 | 0.0 | 0.573 | 6.030 | 80.8 | 2.5050 | 1.0 | 273.0 | 21.0 | 7.88 | 11.9 | 70 years and older |
506 rows × 15 columns
boston_df["CHAS"].value_counts()
0.0 471 1.0 35 Name: CHAS, dtype: int64
a = boston_df[boston_df["CHAS"] == 0]["MEDV"]
a
0 24.0 1 21.6 2 34.7 3 33.4 4 36.2 ... 501 22.4 502 20.6 503 23.9 504 22.0 505 11.9 Name: MEDV, Length: 471, dtype: float64
b = boston_df[boston_df["CHAS"] == 1]["MEDV"]
b
142 13.4 152 15.3 154 17.0 155 15.6 160 27.0 162 50.0 163 50.0 208 24.4 209 20.0 210 21.7 211 19.3 212 22.4 216 23.3 218 21.5 219 23.0 220 26.7 221 21.7 222 27.5 234 29.0 236 25.1 269 20.7 273 35.2 274 32.4 276 33.2 277 33.1 282 46.0 283 50.0 356 17.8 357 21.7 358 22.7 363 16.8 364 21.9 369 50.0 370 50.0 372 50.0 Name: MEDV, dtype: float64
scipy.stats.ttest_ind(a,b,axis=0,equal_var=True)
Ttest_indResult(statistic=-3.996437466090509, pvalue=7.390623170519905e-05)
boston_df["AGE"].value_counts()
100.0 43 95.4 4 96.0 4 98.2 4 97.9 4 .. 58.4 1 74.4 1 73.4 1 33.1 1 89.3 1 Name: AGE, Length: 356, dtype: int64
boston_df.loc[(boston_df["AGE"] <= 35),'age_group'] = '35 years and younger'
boston_df.loc[(boston_df["AGE"] > 35) & (boston_df["AGE"]<70),'age_group'] = 'between 35 and 70 years'
boston_df.loc[(boston_df["AGE"] >= 70),'age_group'] = '70 years and older'
boston_df
Unnamed: 0 | CRIM | ZN | INDUS | CHAS | NOX | RM | AGE | DIS | RAD | TAX | PTRATIO | LSTAT | MEDV | age_group | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.00632 | 18.0 | 2.31 | 0.0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3 | 4.98 | 24.0 | between 35 and 70 years |
1 | 1 | 0.02731 | 0.0 | 7.07 | 0.0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8 | 9.14 | 21.6 | 70 years and older |
2 | 2 | 0.02729 | 0.0 | 7.07 | 0.0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8 | 4.03 | 34.7 | between 35 and 70 years |
3 | 3 | 0.03237 | 0.0 | 2.18 | 0.0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7 | 2.94 | 33.4 | between 35 and 70 years |
4 | 4 | 0.06905 | 0.0 | 2.18 | 0.0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7 | 5.33 | 36.2 | between 35 and 70 years |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
501 | 501 | 0.06263 | 0.0 | 11.93 | 0.0 | 0.573 | 6.593 | 69.1 | 2.4786 | 1.0 | 273.0 | 21.0 | 9.67 | 22.4 | between 35 and 70 years |
502 | 502 | 0.04527 | 0.0 | 11.93 | 0.0 | 0.573 | 6.120 | 76.7 | 2.2875 | 1.0 | 273.0 | 21.0 | 9.08 | 20.6 | 70 years and older |
503 | 503 | 0.06076 | 0.0 | 11.93 | 0.0 | 0.573 | 6.976 | 91.0 | 2.1675 | 1.0 | 273.0 | 21.0 | 5.64 | 23.9 | 70 years and older |
504 | 504 | 0.10959 | 0.0 | 11.93 | 0.0 | 0.573 | 6.794 | 89.3 | 2.3889 | 1.0 | 273.0 | 21.0 | 6.48 | 22.0 | 70 years and older |
505 | 505 | 0.04741 | 0.0 | 11.93 | 0.0 | 0.573 | 6.030 | 80.8 | 2.5050 | 1.0 | 273.0 | 21.0 | 7.88 | 11.9 | 70 years and older |
506 rows × 15 columns
low = boston_df[boston_df["age_group"] == '35 years and younger']["MEDV"]
mid = boston_df[boston_df["age_group"] == 'between 35 and 70 years']["MEDV"]
high = boston_df[boston_df["age_group"] == '70 years and older']["MEDV"]
f_stats, p_value = scipy.stats.f_oneway(low,mid,high,axis=0)
print("F-Statistic={0}, P-value={1}".format(f_stats,p_value))
F-Statistic=36.40764999196599, P-value=1.7105011022702984e-15
pearson,p_value = scipy.stats.pearsonr(boston_df["NOX"],boston_df["INDUS"])
print("Pearson Coefficient value={0}, P-value={1}".format(pearson,p_value))
Pearson Coefficient value=0.7636514469209151, P-value=7.913361061238693e-98
boston_df.columns
Index(['Unnamed: 0', 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'LSTAT', 'MEDV', 'age_group'], dtype='object')
y = boston_df['MEDV']
x = boston_df['DIS']
x = sm.add_constant(x)
results = sm.OLS(y,x).fit()
results.summary()
Dep. Variable: | MEDV | R-squared: | 0.062 |
---|---|---|---|
Model: | OLS | Adj. R-squared: | 0.061 |
Method: | Least Squares | F-statistic: | 33.58 |
Date: | Thu, 14 Apr 2022 | Prob (F-statistic): | 1.21e-08 |
Time: | 08:48:57 | Log-Likelihood: | -1823.9 |
No. Observations: | 506 | AIC: | 3652. |
Df Residuals: | 504 | BIC: | 3660. |
Df Model: | 1 | ||
Covariance Type: | nonrobust |
coef | std err | t | P>|t| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
const | 18.3901 | 0.817 | 22.499 | 0.000 | 16.784 | 19.996 |
DIS | 1.0916 | 0.188 | 5.795 | 0.000 | 0.722 | 1.462 |
Omnibus: | 139.779 | Durbin-Watson: | 0.570 |
---|---|---|---|
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 305.104 |
Skew: | 1.466 | Prob(JB): | 5.59e-67 |
Kurtosis: | 5.424 | Cond. No. | 9.32 |
np.sqrt(0.062) ##Pearson Coeffiecent valuea
0.24899799195977465
boston_df.corr()
Unnamed: 0 | CRIM | ZN | INDUS | CHAS | NOX | RM | AGE | DIS | RAD | TAX | PTRATIO | LSTAT | MEDV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unnamed: 0 | 1.000000 | 0.407407 | -0.103393 | 0.399439 | -0.003759 | 0.398736 | -0.079971 | 0.203784 | -0.302211 | 0.686002 | 0.666626 | 0.291074 | 0.258465 | -0.226604 |
CRIM | 0.407407 | 1.000000 | -0.200469 | 0.406583 | -0.055892 | 0.420972 | -0.219247 | 0.352734 | -0.379670 | 0.625505 | 0.582764 | 0.289946 | 0.455621 | -0.388305 |
ZN | -0.103393 | -0.200469 | 1.000000 | -0.533828 | -0.042697 | -0.516604 | 0.311991 | -0.569537 | 0.664408 | -0.311948 | -0.314563 | -0.391679 | -0.412995 | 0.360445 |
INDUS | 0.399439 | 0.406583 | -0.533828 | 1.000000 | 0.062938 | 0.763651 | -0.391676 | 0.644779 | -0.708027 | 0.595129 | 0.720760 | 0.383248 | 0.603800 | -0.483725 |
CHAS | -0.003759 | -0.055892 | -0.042697 | 0.062938 | 1.000000 | 0.091203 | 0.091251 | 0.086518 | -0.099176 | -0.007368 | -0.035587 | -0.121515 | -0.053929 | 0.175260 |
NOX | 0.398736 | 0.420972 | -0.516604 | 0.763651 | 0.091203 | 1.000000 | -0.302188 | 0.731470 | -0.769230 | 0.611441 | 0.668023 | 0.188933 | 0.590879 | -0.427321 |
RM | -0.079971 | -0.219247 | 0.311991 | -0.391676 | 0.091251 | -0.302188 | 1.000000 | -0.240265 | 0.205246 | -0.209847 | -0.292048 | -0.355501 | -0.613808 | 0.695360 |
AGE | 0.203784 | 0.352734 | -0.569537 | 0.644779 | 0.086518 | 0.731470 | -0.240265 | 1.000000 | -0.747881 | 0.456022 | 0.506456 | 0.261515 | 0.602339 | -0.376955 |
DIS | -0.302211 | -0.379670 | 0.664408 | -0.708027 | -0.099176 | -0.769230 | 0.205246 | -0.747881 | 1.000000 | -0.494588 | -0.534432 | -0.232471 | -0.496996 | 0.249929 |
RAD | 0.686002 | 0.625505 | -0.311948 | 0.595129 | -0.007368 | 0.611441 | -0.209847 | 0.456022 | -0.494588 | 1.000000 | 0.910228 | 0.464741 | 0.488676 | -0.381626 |
TAX | 0.666626 | 0.582764 | -0.314563 | 0.720760 | -0.035587 | 0.668023 | -0.292048 | 0.506456 | -0.534432 | 0.910228 | 1.000000 | 0.460853 | 0.543993 | -0.468536 |
PTRATIO | 0.291074 | 0.289946 | -0.391679 | 0.383248 | -0.121515 | 0.188933 | -0.355501 | 0.261515 | -0.232471 | 0.464741 | 0.460853 | 1.000000 | 0.374044 | -0.507787 |
LSTAT | 0.258465 | 0.455621 | -0.412995 | 0.603800 | -0.053929 | 0.590879 | -0.613808 | 0.602339 | -0.496996 | 0.488676 | 0.543993 | 0.374044 | 1.000000 | -0.737663 |
MEDV | -0.226604 | -0.388305 | 0.360445 | -0.483725 | 0.175260 | -0.427321 | 0.695360 | -0.376955 | 0.249929 | -0.381626 | -0.468536 | -0.507787 | -0.737663 | 1.000000 |
plt.figure(figsize=(16,9))
sns.heatmap(boston_df.corr(),cmap="coolwarm",annot=True,fmt='.2f',linewidths=2, cbar=False)
plt.show()